Source code for probation

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is part of the Cortix toolkit environment.
# https://cortix.org

import numpy as np
import scipy.constants as const
from scipy.integrate import odeint

from cortix import Module
from cortix import Phase
from cortix import Quantity

[docs]class Probation(Module): ''' Probation Cortix module used to model criminal group population in a probation. Notes ----- These are the `port` names available in this module to connect to respective modules: `adjudication`, `jail`, `arrested`, and `community`. See instance attribute `port_names_expected`. '''
[docs] def __init__(self, n_groups=1, pool_size=0.0): ''' Parameters ---------- n_groups: int Number of groups in the population. pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. ''' super().__init__() self.port_names_expected = ['adjudication','jail','arrested','community'] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * const.day self.end_time = 100 * const.day self.time_step = 0.5 * const.day # Population groups self.n_groups = n_groups # Probation population groups fbg_0 = np.random.random(self.n_groups) * pool_size fbg = Quantity(name='fbg', formalName='probation-pop-grps', unit='individual', value=fbg_0) quantities.append(fbg) # Model parameters: commitment coefficients and their modifiers # Probation to community cb0g_0 = np.random.random(self.n_groups) / const.day cb0g = Quantity(name='cb0g', formalName='commit-community-coeff-grps', unit='individual', value=cb0g_0) self.ode_params['commit-to-community-coeff-grps'] = cb0g_0 quantities.append(cb0g) mb0g_0 = np.random.random(self.n_groups) mb0g = Quantity(name='mb0g', formalName='commit-community-coeff-mod-grps', unit='individual', value=mb0g_0) self.ode_params['commit-to-community-coeff-mod-grps'] = mb0g_0 quantities.append(mb0g) # Probation to jail cbjg_0 = np.random.random(self.n_groups) / const.day cbjg = Quantity(name='cbjg', formalName='commit-jail-coeff-grps', unit='individual', value=cbjg_0) self.ode_params['commit-to-jail-coeff-grps'] = cbjg_0 quantities.append(cbjg) mbjg_0 = np.random.random(self.n_groups) mbjg = Quantity(name='mbjg', formalName='commit-jail-coeff-mod-grps', unit='individual', value=mbjg_0) self.ode_params['commit-to-jail-coeff-mod-grps'] = mbjg_0 quantities.append(mbjg) # Death term self.ode_params['probation-death-rates'] = np.zeros(self.n_groups) # Initialize inflows to zero self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('fbg', fbg_0, self.initial_time) return
[docs] def run(self, *args): self.__zero_ode_parameters() time = self.initial_time while time < self.end_time: # Interactions in the jail port #------------------------------ # one way "to" jail message_time = self.recv('jail') outflow_rates = self.__compute_outflow_rates( message_time, 'jail' ) self.send( (message_time, outflow_rates), 'jail' ) # Interactions in the adjudication port #------------------------------------ # one way "from" adjudication self.send( time, 'adjudication' ) (check_time, inflow_rates) = self.recv('adjudication') assert abs(check_time-time) <= 1e-6 self.ode_params['adjudication-inflow-rates'] = inflow_rates # Interactions in the arrested port #---------------------------------- # one way "from" arrested self.send( time, 'arrested' ) (check_time, inflow_rates) = self.recv('arrested') assert abs(check_time-time) <= 1e-6 self.ode_params['arrested-inflow-rates'] = inflow_rates # Interactions in the community port #------------------------------ # one way "to" community message_time = self.recv('community') outflow_rates = self.__compute_outflow_rates( message_time, 'community' ) self.send( (message_time, outflow_rates), 'community' ) # Evolve probation group population to the next time stamp #--------------------------------------------------------- time = self.__step( time )
def __rhs_fn(self, u_vec, t, params): fbg = u_vec # probation population groups arrested_inflow_rates = params['arrested-inflow-rates'] adjudication_inflow_rates = params['adjudication-inflow-rates'] inflow_rates = arrested_inflow_rates + adjudication_inflow_rates cb0g = self.ode_params['commit-to-community-coeff-grps'] mb0g = self.ode_params['commit-to-community-coeff-mod-grps'] cbjg = self.ode_params['commit-to-jail-coeff-grps'] mbjg = self.ode_params['commit-to-jail-coeff-mod-grps'] outflow_rates = ( cb0g * mb0g + cbjg * mbjg ) * fbg death_rates = params['probation-death-rates'] dt_fbg = inflow_rates - outflow_rates - death_rates return dt_fbg def __step(self, time=0.0): r''' ODE IVP problem: Given the initial data at :math:`t=0`, :math:`u = (u_1(0),u_2(0),\ldots)` solve :math:`\frac{\text{d}u}{\text{d}t} = f(u)` in the interval :math:`0\le t \le t_f`. Parameters ---------- time: float Time in the droplet unit of time (seconds). Returns ------- None ''' u_vec_0 = self.population_phase.GetValue('fbg', time) t_interval_sec = np.linspace(0.0, self.time_step, num=2) (u_vec_hist, info_dict) = odeint(self.__rhs_fn, u_vec_0, t_interval_sec, args=( self.ode_params, ), rtol=1e-4, atol=1e-8, mxstep=200, full_output=True) assert info_dict['message'] =='Integration successful.', info_dict['message'] u_vec = u_vec_hist[1,:] # solution vector at final time step values = self.population_phase.GetRow(time) # values at previous time time += self.time_step self.population_phase.AddRow(time, values) # Update current values self.population_phase.SetValue('fbg', u_vec, time) return time def __compute_outflow_rates(self, time, name): fbg = self.population_phase.GetValue('fbg',time) assert np.all(fbg>=0.0), 'values: %r'%fbg if name == 'jail': cbjg = self.ode_params['commit-to-jail-coeff-grps'] mbjg = self.ode_params['commit-to-jail-coeff-mod-grps'] outflow_rates = cbjg * mbjg * fbg if name == 'community': cb0g = self.ode_params['commit-to-community-coeff-grps'] mb0g = self.ode_params['commit-to-community-coeff-mod-grps'] outflow_rates = cb0g * mb0g * fbg return outflow_rates def __zero_ode_parameters(self): ''' If ports are not connected the corresponding outflows must be zero. ''' zeros = np.zeros(self.n_groups) p_names = [p.name for p in self.ports] if 'community' not in p_names: self.ode_params['commit-to-community-coeff-grps'] = zeros self.ode_params['commit-to-community-coeff-mod-grps'] = zeros if 'jail' not in p_names: self.ode_params['commit-to-jail-coeff-grps'] = zeros self.ode_params['commit-to-jail-coeff-mod-grps'] = zeros return